Gold nanoparticles grown inside carbon nanotubes: synthesis and electrical transport measurements
نویسندگان
چکیده
The hybrid structures composed of gold nanoparticles and carbon nanotubes were prepared using porous alumina membranes as templates. Carbon nanotubes were synthesized inside the pores of these templates by the non-catalytic decomposition of acetylene. The inner cavity of the supported tubes was used as nanoreactors to grow gold particles by impregnation with a gold salt, followed by a calcination-reduction process. The samples were characterized by transmission electron microscopy and X-ray energy dispersion spectroscopy techniques. The resulting hybrid products are mainly encapsulated gold nanoparticles with different shapes and dimensions depending on the concentration of the gold precursor and the impregnation procedure. In order to understand the electronic transport mechanisms in these nanostructures, their conductance was measured as a function of temperature. The samples exhibit a 'non-metallic' temperature dependence where the dominant electron transport mechanism is 1D hopping. Depending on the impregnation procedure, the inclusion of gold nanoparticles inside the CNTs can introduce significant changes in the structure of the tubes and the mechanisms for electronic transport. The electrical resistance of these hybrid structures was monitored under different gas atmospheres at ambient pressure. Using this hybrid nanostructures, small amounts of acetylene and hydrogen were detected with an increased sensibility compared with pristine carbon nanotubes. Although the sensitivity of these hybrid nanostructures is rather low compared to alternative sensing elements, their response is remarkably fast under changing gas atmospheres.
منابع مشابه
The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohm...
متن کاملTransport and encapsulation of gold nanoparticles in carbon nanotubes.
Nanoparticles confined in small volumes exhibit functional properties different from that of the bulk material. Furthermore, the smaller the volume available then the greater the effects of confinement are observed to be. Metallic nanoparticles encapsulated within carbon nanotubes have been proposed for many applications ranging from catalysis to quantum storage devices. In this study we examin...
متن کاملHighly Doped Carbon Nanotubes with Gold Nanoparticles and Their Influence on Electrical Conductivity and Thermopower of Nanocomposites
Carbon nanotubes (CNTs) are often used as conductive fillers in composite materials, but electrical conductivity is limited by the maximum filler concentration that is necessary to maintain composite structures. This paper presents further improvement in electrical conductivity by precipitating gold nanoparticles onto CNTs. In our composites, the concentrations of CNTs and poly (vinyl acetate) ...
متن کاملElectrical and Thermal Interface Conductance of Carbon Nanotubes Grown under Direct Current Bias Voltage
The electrical resistance of individual multiwalled carbon nanotubes and the thermal interface resistance of nanotube arrays are investigated as functions of dc bias voltage used during growth. Nanotubes were grown from Fe2O3 nanoparticles supported on Ti/SiO2/Si substrates by microwave plasma chemical vapor deposition (MPCVD) under dc bias voltages of -200, -100, 0, +100, and +200 V. Electrica...
متن کاملCarbon nanotubes: synthesis, integration, and properties.
Synthesis of carbon nanotubes by chemical vapor deposition over patterned catalyst arrays leads to nanotubes grown from specific sites on surfaces. The growth directions of the nanotubes can be controlled by van der Waals self-assembly forces and applied electric fields. The patterned growth approach is feasible with discrete catalytic nanoparticles and scalable on large wafers for massive arra...
متن کامل